
   ISSN NO: 9726-001X 

Volume 13 Issue 02 2025 

 

 

 

 
 

296  

ANOMALY DETECION IN INDUSTRIAL CONTROL SYSTEM USING  

THE HAI SECURITY DATASET 
 

Baddam Kavya1 ,Puppala Rohith2 ,Yedulapuram Abhiram3 ,ana Mr. venkanna Mood 4 
1,2,3 UG Scholar,Department of ECE,St.Martin’s Engineering College,Secunderabad,Telangana,India, 500100 

4Assistant Professor, Department of ECE,St.Martin’s Engineering College,Secunderabad,Telangana,India, 500100 
kavyareddy02697@gmail.com 

 

Abstract: 

 
Industrial Control Systems (ICS) play a crucial role in managing critical 

infrastructure, including power plants, water treatment facilities, and 

manufacturing units. With the growing interconnectivity of these 

systems, they have become increasingly vulnerable to cyber threats, 

leading to significant operational and financial risks. The Hyundai 

AutoEver AI (HAI) Security Dataset provides a comprehensive time- 

series dataset specifically designed for anomaly detection in ICS 

environments. Historically, ICS systems were built as isolated 

networks, relying on air-gapped security to prevent unauthorized 

access. However, with the evolution of Industry 4.0 and the integration 

of IoT devices, the systems have become more exposed to cyberattacks. 

Traditional security mechanisms, such as rule-based intrusion detection 

systems (IDS) and signature-based anomaly detection, have struggled 

to keep pace with the complexity of modern cyber threats. The systems 

are often ineffective against novel attacks and generate a high number 

of false positives, making real-time threat mitigation a challenging task. 

The primary problem lies in the detection of sophisticated attacks that 

manipulate sensor readings and actuator states to cause undetected 

disruptions in industrial processes. The HAI Security Dataset provides 

labeled time-series data collected from a realistic ICS testbed, making 

it highly suitable for machine learning (ML) and deep learning (DL)- 

based anomaly detection approaches. Traditional ICS security measures 

fail to leverage advanced data-driven techniques, leading to delayed 

response times and limited scalability in threat detection. The 

limitations of conventional security models highlight the urgent need 

for intelligent anomaly detection systems capable of learning dynamic 

patterns from real-world data. The significance of this study lies in the 

development of robust AI-driven models that can detect anomalies with 

high accuracy, reducing the risk of operational failures and security 

breaches in industrial environments. By utilizing the HAI dataset, this 

research aims to enhance ICS security through automated anomaly 

detection, thereby contributing to the resilience of critical infrastructure 

against emerging cyber threats. 

Keywords:Industrial Control Systems (ICS), Cybersecurity, Anomaly 

Detection, Machine Learning (ML),Deep Learning (DL),Time-series 

Data, IoT Security, HAI Security Dataset, Sensor Manipulation 

1. INTRODUCTION 

 
Industrial Control Systems (ICS) are integral to the operation and 

management of critical infrastructure, including power grids, water 

treatment plants, oil refineries, and manufacturing industries. These 

systems rely on Supervisory Control and Data Acquisition (SCADA) and 

other automated control mechanisms to ensure seamless industrial 

operations. However, with the increasing digitalization and connectivity 

of ICS environments, particularly through the adoption of Industrial 

Internet of Things (IIoT) technologies, the risk of cyber threats and 

security breaches has significantly increased. Traditional ICS systems 

were initially designed as isolated environments with minimal 

cybersecurity considerations, relying on physical security measures and 

proprietary protocols for protection. However, the integration of 

networked systems and cloud-based solutions has introduced new 

vulnerabilities, making ICS a prime target for cyberattacks. Cyber threats 

targeting ICS can have severe consequences, including operational 

disruptions, economic losses, and even safety hazards in critical 

infrastructure. Traditional security mechanisms, such as firewall-based 

protection and rule-based anomaly detection, often fail to detect 

sophisticated attacks that manipulate sensor readings, actuator 

commands, or communication protocols. To address these challenges, 

machine learning (ML) and deep learning (DL)-based anomaly detection 

techniques have gained traction as effective solutions for identifying 

malicious activities in real-time. The Hyundai AutoEver AI (HAI) 

Security Dataset, specifically designed for ICS security research, 

provides real-world, labeled time-series data collected from a simulated 

industrial environment. This dataset enables the development and 

evaluation of intelligent models capable of detecting anomalies with high 

accuracy. The primary objective of this research is to design and 

implement an AI-driven anomaly detection framework leveraging the 

HAI Security Dataset. By analyzing sensor and actuator behavior, the 

model aims to distinguish between normal operations and cyber threats, 

ensuring early detection and mitigation of potential risks. This research 

holds significant importance in strengthening ICS cybersecurity by 

enhancing situational awareness, minimizing false positives, and 

enabling proactive threat responses. The proposed solution is expected to 

contribute to the resilience and reliability of industrial control 
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environments, ultimately ensuring the safe and secure operation of 

critical infrastructure in an increasingly interconnected world. 

2. LITERATURE SURVEY 
 

Putchala et al. [1] proposed to apply a deep learning method using 

gated recurrent units (GRUs) to an intrusion detection system for IoT 

networks. The method showed a higher detection accuracy than 

traditional methods. They also proposed a lightweight and multi- 

layered design to enhance the security of IoT networks. Du et al. [2] 

proposed an unsupervised machine learning-based detection model 

based on LSTM-AE and GANs, which can learn complex patterns in 

time series data to detect anomalies more accurately. Goh et al. [3] 

introduced an unsupervised learning approach using RNNs to learn the 

changes in data patterns over time and use them to detect 

anomalies. In addition, Mokhtari et al. [4] used random forests to 

detect anomalous activity in industrial control systems. They showed 

that this method outperformed other classifier algorithms, which can 

significantly improve the detection of cyberattacks. Wolsing et al.[5] 

utilized random forests to effectively detect anomalous activity in 

industrial control systems. These techniques are proving to be highly 

effective in anomaly detection by learning complex data patterns and 

considering changes over time. Mahbod Tavallaee et al. [6] conducted 

a statistical analysis on the KDDCUP’99, finding that some issues 

with the dataset adversely affected the anomaly detection experiences. 

Gómez et al.[7] presented Electra8, an anomaly detection dataset for 

heterogeneous ICS scenarios. They selected the railway industry, and 

the Electra dataset was conducted using network traffic generated 

from normal and attack situations at a traction substation. Faramondi 

et al. [8] was used to generate an intrusion detection dataset for ICSs. 

They emulated water flowing between 8 tanks as Hardware in a Loop 

as a simulation tool to simulate the control system and networking 

infrastructure. Ferrag et al. [9] introduced the Edge-IIoTSet, a 

proposed dataset for Cyber Security in Internet of Things (IoT) and 

IIoT devices. The dataset encompasses a wide range of IoT devices 

and incorporates an extensive list of features derived from diverse 

sources such as alerts, system resources, logs, and network traffic. 

Alsaedi et al. [10], comprises Telemetry data of IoT/IIoT devices 

collected in a controlled environment during both normal operations 

and in the presence of different cyber-attacks. In addition, the dataset 

also includes operating systems logs (such as disk or memory usage 

and process information) and network traffic of an IoT network, 

acquired from a realistic representation of a medium-scale network at 

the Cyber Range and IoT Labs. Ozay et al. [11] proposed an attack 

detection model employing state vector estimation (SVE) to detect 

false data injection at the physical layer of a smart grid. They showed 

that the model performs accurately on various IEEE test systems in 

detection of abnormal behaviors; however, it cannot detect the stealthy 

malicious activities properly. Pan et al. [12] introduced an IDS 

strategy leveraging features of signature-based and specification-based 

detection methods which protects an electrical power transmission line 

from attacks. Choi et al. [13] presented an IDS based on voltage 

measurement data to detect in-vehicle controller area network 

intrusions using inimitable characteristics of electrical signals. 

3. PROPOSED METHODOLOGY 

3.1 Overview 

Industrial Control Systems (ICS) play a critical role in managing 

infrastructure in industries such as power plants, water treatment 

facilities, and manufacturing. These systems rely on Supervisory Control 

and Data Acquisition (SCADA) to monitor and control industrial 

processes. However, with the increasing integration of IT and OT 

(Operational Technology), ICS environments have become highly 

vulnerable to cyber threats, making anomaly detection essential to ensure 

security and operational continuity. Traditional security methods, such 

as rule-based intrusion detection systems (IDS) and firewall-based 

protection, are often inadequate in detecting sophisticated attacks. These 

methods rely on predefined rules or known attack signatures, making 

them ineffective against zero-day threats and evolving cyber-attacks. 
 

 
 

Fig 3.1 Proposed DNN with DTC system architecture 

3.1.1 

Objectives 

 
 

1. Develop an AI-Based Anomaly Detection System 

 
• Identify and classify abnormal behaviors in industrial control 

systems using machine learning and deep learning 

techniques. 

2. Enhance Security in Industrial Systems 

 
• Detect cyber threats, system faults, or any anomalies that could 

compromise operational safety using the HAI Security 

Dataset. 

3. Feature Engineering for Improved Prediction 
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• Extract meaningful features from time-series data to improve 

classification accuracy. 

4. Compare Machine Learning and Deep Learning 

Approaches 

• Evaluate Naïve Bayes Classifier vs. DNN + Decision Tree 

to determine the best-performing anomaly detection model. 

 
5. Provide a GUI-Based User Interface 

 
• Develop a Tkinter-based application for easy dataset 

loading, model training, anomaly detection, and result 

visualization. 

Key Components : 

1. Data Preprocessing 

• Handle missing values, normalize numerical features, and 

extract time-based attributes. 

 

2. Feature Engineering 

• Extract meaningful insights from raw sensor data (e.g., 

timestamp-based features). 

 

3. Model Training & Comparison 

• Naïve Bayes Classifier (Existing System) 

 
o Uses a probabilistic approach for anomaly 

detection. 

 

• DNN + Decision Tree (Proposed System) 

 
o Deep Neural Network (DNN) extracts high-level 

features. 

 

o Decision Tree Classifier uses these features for 

final classification. 

 

4. Performance Evaluation 

• Metrics: Accuracy, Precision, Recall, F1-score, and 

Confusion Matrix 

• Compare traditional ML vs. deep learning approaches. 

 
5. GUI Implementation (Tkinter) 

• Dataset Upload: Load the HAI dataset for training and 

testing. 

• Model Training: Train models using selected algorithms. 

 

• Prediction Module: Perform real-time anomaly detection on 

new data. 

 

• Graph Visualization: Display performance comparison of 

different models. 

3.2 Proposed workflow 

The proposed workflow for anomaly detection in industrial control 

systems using the HAI Security Dataset begins with data preprocessing, 

where raw sensor data undergoes cleaning, normalization, and feature 

extraction to ensure high-quality inputs for the model. Next, in the feature 

engineering phase, relevant time-series features are extracted to enhance 

anomaly detection accuracy. The dataset is then split into training and 

testing sets, followed by the model training phase, where a Deep Neural 

Network (DNN) is combined with a Decision Tree Classifier to detect 

anomalies. This proposed approach is compared against the existing 

Naïve Bayes Classifier to assess improvements in detection accuracy. 

Once trained, the model undergoes performance evaluation using metrics 

such as accuracy, precision, recall, and F1-score to determine its 

effectiveness. The final stage involves GUI-based implementation using 

Tkinter, where users can upload datasets, train models, visualize 

performance graphs, and detect anomalies in real-time. This structured 

workflow ensures a robust and scalable AI-powered anomaly detection 

system for industrial control security. 

3.3 Model Building & Training 

The model development for Anomaly Detection in Industrial Control 

Systems using DNN and Decision Tree Classifier (DTC) consists of 

the following key stages: 

1. Data Preprocessing & Feature Engineering 

• Dataset Used: HAI Security Dataset 

 
• Data Cleaning: Handle missing values, remove outliers, and 

normalize sensor data. 

• Feature Scaling: Normalize numerical values to ensure 

uniformity for deep learning processing. 

• Feature Selection: Select relevant features based on 

correlation analysis to reduce redundancy. 

• Data Splitting: Divide data into training (70%), validation 

(15%), and test (15%) sets. 

 

2. Deep Neural Network (DNN) Model for Feature Extraction 

• Input Layer: Takes sensor values as input. 

 

• Hidden Layers: Multiple dense layers with ReLU activation 

to capture non-linear patterns. 

• Dropout Layers: Added to prevent overfitting. 

 
• Output Layer: Produces a feature vector representation. 

 
Feature Vector Extraction: The output of the last dense layer is treated 

as the extracted feature set for classification. 

3. Decision Tree Classifier (DTC) for Classification 

• The feature vector from the DNN model is passed to the 

Decision Tree Classifier. 
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• The Decision Tree learns patterns and splits data into: 

 
o Anomaly (Attack detected) 

 
o Normal (No threat detected) 

 
4. Model Training 

• DNN Training: 

 
o Optimizer: Adam 

 
o Loss Function: Categorical Cross-Entropy 

 
o Batch Size: 32 or 64 

 
o Epochs: 50+ (until convergence) 

 

• Decision Tree Training: 

 
o Training on the feature vector extracted from the 

DNN. 

 

o Splitting criteria: Gini impurity or entropy. 

 
o Pruning techniques to prevent overfitting. 

 
5. Model Evaluation & Testing 

• DNN Feature Extraction Performance: 

 
o Loss vs. Accuracy Curve 

 
o Feature importance visualization 

 

• Decision Tree Classification Performance: 

 
o Metrics: Accuracy, Precision, Recall, F1-Score, 

ROC Curve 

 
o Confusion Matrix for anomaly detection insights. 

 
6. Deployment & Real-Time Monitoring 

• The trained model is deployed in an industrial setting for real- 

time anomaly detection. 

 

Continuous model updates & retraining using new data for improved 

performance. 

3.3.1 Proposed DNN with DTC Model 

In this hybrid model, DNN is used to learn hierarchical representations 

from the raw input data. The network comprises several dense (fully 

connected) layers with ReLU activations and concludes with a softmax 

layer for initial class prediction. However, to leverage the DNN’s 

powerful feature extraction, features are taken from an intermediate 

layer and fed into a Decision Tree classifier. This ensemble method 

aggregates the predictions of multiple decision trees, which often 

results in improved robustness and accuracy compared to using the 

DNN alone. 

DNN Component (Feature Extractor): The DNN is a fully connected 

feed-forward network that begins with an input layer accepting the 

preprocessed feature vector (with a dimension equal to the number of 

input features). It then processes the data through several hidden layers: 

• The first hidden layer consists of 128 neurons with a ReLU 

activation function, which begins the process of learning non- 

linear relationships. 

• The second hidden layer reduces the dimensionality to 64 

neurons, further abstracting the data while preserving essential 

patterns. 

• The third hidden layer contains 32 neurons, continuing to 

distill the information into a more compact form. 

• The fourth hidden layer, with 16 neurons, serves as the final 

stage of feature abstraction. 

 

• A final dense layer with 8 neurons and a softmax activation is 

originally intended for classification purposes when the DNN 

is used as a standalone model. 
 

 
 

 
Fig. 3.2: Proposed DNN with DTC model. 

 
 

However, in the hybrid setup, the final softmax layer is omitted during 

feature extraction. Instead, the outputs from the penultimate layer (the 
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16- neuron layer) or even the combination of all hidden layers up to— 

but not including—the final classification layer are used as the new 

feature representation. These features are considered robust and 

discriminative because they are learned automatically from the raw data 

through multiple levels of abstraction. 

Decision Tree Classifier (Ensemble Classifier): Once the DNN has 

been trained, the intermediate feature representations are extracted and 

used to train a Decision Tree Classifier. DTC is an ensemble method 

that constructs multiple decision trees during training and outputs the 

class that is the mode of the classes (classification) of the individual 

trees. This step helps to mitigate overfitting and improves the 

robustness of the final predictions, particularly in scenarios where the 

data might be noisy or imbalanced. 

Layer Architecture Summary: 

1. Input Layer: 

o Receives the feature vector from the preprocessed 

inertial sensor data. 

 

2. Hidden Layers (Feature Extraction): 

 
o Dense Layer 1: 128 neurons, ReLU activation. 

 
o Dense Layer 2: 64 neurons, ReLU activation. 

 
o Dense Layer 3: 32 neurons, ReLU activation. 

 
o Dense Layer 4: 16 neurons, ReLU activation. 

 
3. Output Layer (for standalone DNN classification): 

 
Dense Layer 5: 8 neurons, softmax activation (used during DNN 

training, but excluded when extracting features for the RFC) 

. 3.2.2 Software Requirements 

Python 3.7.6 

Python 3.7.6 serves as a pivotal version for developers and researchers 

due to its robust features, backward compatibility, and widespread 

support across a variety of libraries and frameworks. Released during a 

time when machine learning and data science tools were rapidly 

evolving, Python 3.7.6 provided a stable and consistent platform. This 

version includes critical improvements like enhanced asyncio 

functionality for asynchronous programming, increased precision for 

floating-point numbers, and optimized data structures. It became the go- 

to version for compatibility with popular libraries like TensorFlow 2.0, 

PyTorch, and Pandas, ensuring seamless integration and efficient 

execution for both academic and industrial applications. 

Compared to older Python versions, 3.7.6 introduced several features 

such as dataclasses, which simplified boilerplate code for object- 

oriented programming. The improved async and await syntax made 

concurrent programming more intuitive, while changes to the standard 

library enhanced usability and performance. Over newer versions, 

Python 3.7.6 remains a preferred choice for legacy systems and projects 

requiring compatibility with libraries that may not yet support the latest 

Python updates. Its combination of stability and maturity ensures that it 

is reliable for long-term projects, especsially in environments where 

upgrading the Python interpreter might disrupt existing workflows. 

Packages 

python -m pip install --upgrade pip 

pip install Cython 

pip install tensorflow==1.14.0 

pip install keras==2.3.1 

pip install pandas==0.25.3 

pip install scikit-learn==0.22.2.post1 

pip install imutils 

pip install matplotlib==3.1.1 

pip install opencv-python==4.8.0.74 

pip install seaborn==0.10.1 

pip install h5py==2.10.0 

pip install numpy==1.19.2 

pip install jupyter 

pip install protobuf==3.20.* 

pip install scikit-image==0.16.0 

TensorFlow Environment 

TensorFlow provides a comprehensive ecosystem for building, training, 

and deploying machine learning models. Its support for numerical 

computation and deep learning applications makes it a staple in AI 

research and development. By offering a flexible architecture, 

TensorFlow enables deployment across a variety of platforms, including 

desktops, mobile devices, and the cloud. The ability to scale across 

CPUs, GPUs, and TPUs ensures that TensorFlow is suitable for both 

small experiments and large-scale production systems. TensorFlow’s 

transition from older versions, like 1.x, to 2.x brought significant 

improvements in ease of use, including the introduction of the tf.keras 

API for building models, eager execution for dynamic computation, and 

enhanced debugging capabilities. Compared to newer frameworks, 

TensorFlow retains a strong advantage due to its mature community 

support, extensive documentation, and integration with TensorFlow 

Extended (TFX) for managing production pipelines. Its compatibility 

with other libraries and tools, such as Keras and TensorBoard, makes it 

a robust choice for end-to-end machine learning solutions. 

4. CONCLUSION 
The project successfully implements an anomaly detection system for 

industrial control systems (ICS) using the HAI Security dataset. The 

system utilizes machine learning (Naïve Bayes) and deep learning (DNN 

with Decision Tree) to classify network behavior as normal or under 

attack. Preprocessing steps, including timestamp conversion, feature 

extraction, and standardization, enhance model performance. The results 

demonstrate that deep learning models can effectively detect anomalies, 

but challenges such as data imbalance and feature relevance impact 

accuracy. The project highlights the potential of  AI-driven security 
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monitoring in industrial settings, offering a proactive approach to 

cybersecurity threats. In the future, this anomaly detection system 

can be enhanced by integrating real-time streaming analysis for 

immediate threat detection. Advanced techniques like hybrid deep 

learning models (e.g., CNN-LSTM) and reinforcement learning 

could improve classification accuracy. Additionally, incorporating 

explainable AI (XAI) can help in understanding model decisions, 

making it more reliable for industrial applications. Further research 

can focus on transfer learning to generalize detection across different 

ICS environments. Deploying this system in edge computing devices 

will allow for low-latency, real-time threat monitoring, enhancing the 

security of industrial automation systems. 
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