
 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

296

ANOMALY DETECION IN INDUSTRIAL CONTROL SYSTEM USING

THE HAI SECURITY DATASET

Baddam Kavya1 ,Puppala Rohith2 ,Yedulapuram Abhiram3 ,ana Mr. venkanna Mood 4
1,2,3 UG Scholar,Department of ECE,St.Martin’s Engineering College,Secunderabad,Telangana,India, 500100

4Assistant Professor, Department of ECE,St.Martin’s Engineering College,Secunderabad,Telangana,India, 500100
kavyareddy02697@gmail.com

Abstract:

Industrial Control Systems (ICS) play a crucial role in managing critical

infrastructure, including power plants, water treatment facilities, and

manufacturing units. With the growing interconnectivity of these

systems, they have become increasingly vulnerable to cyber threats,

leading to significant operational and financial risks. The Hyundai

AutoEver AI (HAI) Security Dataset provides a comprehensive time-

series dataset specifically designed for anomaly detection in ICS

environments. Historically, ICS systems were built as isolated

networks, relying on air-gapped security to prevent unauthorized

access. However, with the evolution of Industry 4.0 and the integration

of IoT devices, the systems have become more exposed to cyberattacks.

Traditional security mechanisms, such as rule-based intrusion detection

systems (IDS) and signature-based anomaly detection, have struggled

to keep pace with the complexity of modern cyber threats. The systems

are often ineffective against novel attacks and generate a high number

of false positives, making real-time threat mitigation a challenging task.

The primary problem lies in the detection of sophisticated attacks that

manipulate sensor readings and actuator states to cause undetected

disruptions in industrial processes. The HAI Security Dataset provides

labeled time-series data collected from a realistic ICS testbed, making

it highly suitable for machine learning (ML) and deep learning (DL)-

based anomaly detection approaches. Traditional ICS security measures

fail to leverage advanced data-driven techniques, leading to delayed

response times and limited scalability in threat detection. The

limitations of conventional security models highlight the urgent need

for intelligent anomaly detection systems capable of learning dynamic

patterns from real-world data. The significance of this study lies in the

development of robust AI-driven models that can detect anomalies with

high accuracy, reducing the risk of operational failures and security

breaches in industrial environments. By utilizing the HAI dataset, this

research aims to enhance ICS security through automated anomaly

detection, thereby contributing to the resilience of critical infrastructure

against emerging cyber threats.

Keywords:Industrial Control Systems (ICS), Cybersecurity, Anomaly

Detection, Machine Learning (ML),Deep Learning (DL),Time-series

Data, IoT Security, HAI Security Dataset, Sensor Manipulation

1. INTRODUCTION

Industrial Control Systems (ICS) are integral to the operation and

management of critical infrastructure, including power grids, water

treatment plants, oil refineries, and manufacturing industries. These

systems rely on Supervisory Control and Data Acquisition (SCADA) and

other automated control mechanisms to ensure seamless industrial

operations. However, with the increasing digitalization and connectivity

of ICS environments, particularly through the adoption of Industrial

Internet of Things (IIoT) technologies, the risk of cyber threats and

security breaches has significantly increased. Traditional ICS systems

were initially designed as isolated environments with minimal

cybersecurity considerations, relying on physical security measures and

proprietary protocols for protection. However, the integration of

networked systems and cloud-based solutions has introduced new

vulnerabilities, making ICS a prime target for cyberattacks. Cyber threats

targeting ICS can have severe consequences, including operational

disruptions, economic losses, and even safety hazards in critical

infrastructure. Traditional security mechanisms, such as firewall-based

protection and rule-based anomaly detection, often fail to detect

sophisticated attacks that manipulate sensor readings, actuator

commands, or communication protocols. To address these challenges,

machine learning (ML) and deep learning (DL)-based anomaly detection

techniques have gained traction as effective solutions for identifying

malicious activities in real-time. The Hyundai AutoEver AI (HAI)

Security Dataset, specifically designed for ICS security research,

provides real-world, labeled time-series data collected from a simulated

industrial environment. This dataset enables the development and

evaluation of intelligent models capable of detecting anomalies with high

accuracy. The primary objective of this research is to design and

implement an AI-driven anomaly detection framework leveraging the

HAI Security Dataset. By analyzing sensor and actuator behavior, the

model aims to distinguish between normal operations and cyber threats,

ensuring early detection and mitigation of potential risks. This research

holds significant importance in strengthening ICS cybersecurity by

enhancing situational awareness, minimizing false positives, and

enabling proactive threat responses. The proposed solution is expected to

contribute to the resilience and reliability of industrial control

mailto:kavyareddy02697@gmail.com

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

297

environments, ultimately ensuring the safe and secure operation of

critical infrastructure in an increasingly interconnected world.

2. LITERATURE SURVEY

Putchala et al. [1] proposed to apply a deep learning method using

gated recurrent units (GRUs) to an intrusion detection system for IoT

networks. The method showed a higher detection accuracy than

traditional methods. They also proposed a lightweight and multi-

layered design to enhance the security of IoT networks. Du et al. [2]

proposed an unsupervised machine learning-based detection model

based on LSTM-AE and GANs, which can learn complex patterns in

time series data to detect anomalies more accurately. Goh et al. [3]

introduced an unsupervised learning approach using RNNs to learn the

changes in data patterns over time and use them to detect

anomalies. In addition, Mokhtari et al. [4] used random forests to

detect anomalous activity in industrial control systems. They showed

that this method outperformed other classifier algorithms, which can

significantly improve the detection of cyberattacks. Wolsing et al.[5]

utilized random forests to effectively detect anomalous activity in

industrial control systems. These techniques are proving to be highly

effective in anomaly detection by learning complex data patterns and

considering changes over time. Mahbod Tavallaee et al. [6] conducted

a statistical analysis on the KDDCUP’99, finding that some issues

with the dataset adversely affected the anomaly detection experiences.

Gómez et al.[7] presented Electra8, an anomaly detection dataset for

heterogeneous ICS scenarios. They selected the railway industry, and

the Electra dataset was conducted using network traffic generated

from normal and attack situations at a traction substation. Faramondi

et al. [8] was used to generate an intrusion detection dataset for ICSs.

They emulated water flowing between 8 tanks as Hardware in a Loop

as a simulation tool to simulate the control system and networking

infrastructure. Ferrag et al. [9] introduced the Edge-IIoTSet, a

proposed dataset for Cyber Security in Internet of Things (IoT) and

IIoT devices. The dataset encompasses a wide range of IoT devices

and incorporates an extensive list of features derived from diverse

sources such as alerts, system resources, logs, and network traffic.

Alsaedi et al. [10], comprises Telemetry data of IoT/IIoT devices

collected in a controlled environment during both normal operations

and in the presence of different cyber-attacks. In addition, the dataset

also includes operating systems logs (such as disk or memory usage

and process information) and network traffic of an IoT network,

acquired from a realistic representation of a medium-scale network at

the Cyber Range and IoT Labs. Ozay et al. [11] proposed an attack

detection model employing state vector estimation (SVE) to detect

false data injection at the physical layer of a smart grid. They showed

that the model performs accurately on various IEEE test systems in

detection of abnormal behaviors; however, it cannot detect the stealthy

malicious activities properly. Pan et al. [12] introduced an IDS

strategy leveraging features of signature-based and specification-based

detection methods which protects an electrical power transmission line

from attacks. Choi et al. [13] presented an IDS based on voltage

measurement data to detect in-vehicle controller area network

intrusions using inimitable characteristics of electrical signals.

3. PROPOSED METHODOLOGY

3.1 Overview

Industrial Control Systems (ICS) play a critical role in managing

infrastructure in industries such as power plants, water treatment

facilities, and manufacturing. These systems rely on Supervisory Control

and Data Acquisition (SCADA) to monitor and control industrial

processes. However, with the increasing integration of IT and OT

(Operational Technology), ICS environments have become highly

vulnerable to cyber threats, making anomaly detection essential to ensure

security and operational continuity. Traditional security methods, such

as rule-based intrusion detection systems (IDS) and firewall-based

protection, are often inadequate in detecting sophisticated attacks. These

methods rely on predefined rules or known attack signatures, making

them ineffective against zero-day threats and evolving cyber-attacks.

Fig 3.1 Proposed DNN with DTC system architecture

3.1.1

Objectives

1. Develop an AI-Based Anomaly Detection System

• Identify and classify abnormal behaviors in industrial control

systems using machine learning and deep learning

techniques.

2. Enhance Security in Industrial Systems

• Detect cyber threats, system faults, or any anomalies that could

compromise operational safety using the HAI Security

Dataset.

3. Feature Engineering for Improved Prediction

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

298

• Extract meaningful features from time-series data to improve

classification accuracy.

4. Compare Machine Learning and Deep Learning

Approaches

• Evaluate Naïve Bayes Classifier vs. DNN + Decision Tree

to determine the best-performing anomaly detection model.

5. Provide a GUI-Based User Interface

• Develop a Tkinter-based application for easy dataset

loading, model training, anomaly detection, and result

visualization.

Key Components :

1. Data Preprocessing

• Handle missing values, normalize numerical features, and

extract time-based attributes.

2. Feature Engineering

• Extract meaningful insights from raw sensor data (e.g.,

timestamp-based features).

3. Model Training & Comparison

• Naïve Bayes Classifier (Existing System)

o Uses a probabilistic approach for anomaly

detection.

• DNN + Decision Tree (Proposed System)

o Deep Neural Network (DNN) extracts high-level

features.

o Decision Tree Classifier uses these features for

final classification.

4. Performance Evaluation

• Metrics: Accuracy, Precision, Recall, F1-score, and

Confusion Matrix

• Compare traditional ML vs. deep learning approaches.

5. GUI Implementation (Tkinter)

• Dataset Upload: Load the HAI dataset for training and

testing.

• Model Training: Train models using selected algorithms.

• Prediction Module: Perform real-time anomaly detection on

new data.

• Graph Visualization: Display performance comparison of

different models.

3.2 Proposed workflow

The proposed workflow for anomaly detection in industrial control

systems using the HAI Security Dataset begins with data preprocessing,

where raw sensor data undergoes cleaning, normalization, and feature

extraction to ensure high-quality inputs for the model. Next, in the feature

engineering phase, relevant time-series features are extracted to enhance

anomaly detection accuracy. The dataset is then split into training and

testing sets, followed by the model training phase, where a Deep Neural

Network (DNN) is combined with a Decision Tree Classifier to detect

anomalies. This proposed approach is compared against the existing

Naïve Bayes Classifier to assess improvements in detection accuracy.

Once trained, the model undergoes performance evaluation using metrics

such as accuracy, precision, recall, and F1-score to determine its

effectiveness. The final stage involves GUI-based implementation using

Tkinter, where users can upload datasets, train models, visualize

performance graphs, and detect anomalies in real-time. This structured

workflow ensures a robust and scalable AI-powered anomaly detection

system for industrial control security.

3.3 Model Building & Training

The model development for Anomaly Detection in Industrial Control

Systems using DNN and Decision Tree Classifier (DTC) consists of

the following key stages:

1. Data Preprocessing & Feature Engineering

• Dataset Used: HAI Security Dataset

• Data Cleaning: Handle missing values, remove outliers, and

normalize sensor data.

• Feature Scaling: Normalize numerical values to ensure

uniformity for deep learning processing.

• Feature Selection: Select relevant features based on

correlation analysis to reduce redundancy.

• Data Splitting: Divide data into training (70%), validation

(15%), and test (15%) sets.

2. Deep Neural Network (DNN) Model for Feature Extraction

• Input Layer: Takes sensor values as input.

• Hidden Layers: Multiple dense layers with ReLU activation

to capture non-linear patterns.

• Dropout Layers: Added to prevent overfitting.

• Output Layer: Produces a feature vector representation.

Feature Vector Extraction: The output of the last dense layer is treated

as the extracted feature set for classification.

3. Decision Tree Classifier (DTC) for Classification

• The feature vector from the DNN model is passed to the

Decision Tree Classifier.

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

299

• The Decision Tree learns patterns and splits data into:

o Anomaly (Attack detected)

o Normal (No threat detected)

4. Model Training

• DNN Training:

o Optimizer: Adam

o Loss Function: Categorical Cross-Entropy

o Batch Size: 32 or 64

o Epochs: 50+ (until convergence)

• Decision Tree Training:

o Training on the feature vector extracted from the

DNN.

o Splitting criteria: Gini impurity or entropy.

o Pruning techniques to prevent overfitting.

5. Model Evaluation & Testing

• DNN Feature Extraction Performance:

o Loss vs. Accuracy Curve

o Feature importance visualization

• Decision Tree Classification Performance:

o Metrics: Accuracy, Precision, Recall, F1-Score,

ROC Curve

o Confusion Matrix for anomaly detection insights.

6. Deployment & Real-Time Monitoring

• The trained model is deployed in an industrial setting for real-

time anomaly detection.

Continuous model updates & retraining using new data for improved

performance.

3.3.1 Proposed DNN with DTC Model

In this hybrid model, DNN is used to learn hierarchical representations

from the raw input data. The network comprises several dense (fully

connected) layers with ReLU activations and concludes with a softmax

layer for initial class prediction. However, to leverage the DNN’s

powerful feature extraction, features are taken from an intermediate

layer and fed into a Decision Tree classifier. This ensemble method

aggregates the predictions of multiple decision trees, which often

results in improved robustness and accuracy compared to using the

DNN alone.

DNN Component (Feature Extractor): The DNN is a fully connected

feed-forward network that begins with an input layer accepting the

preprocessed feature vector (with a dimension equal to the number of

input features). It then processes the data through several hidden layers:

• The first hidden layer consists of 128 neurons with a ReLU

activation function, which begins the process of learning non-

linear relationships.

• The second hidden layer reduces the dimensionality to 64

neurons, further abstracting the data while preserving essential

patterns.

• The third hidden layer contains 32 neurons, continuing to

distill the information into a more compact form.

• The fourth hidden layer, with 16 neurons, serves as the final

stage of feature abstraction.

• A final dense layer with 8 neurons and a softmax activation is

originally intended for classification purposes when the DNN

is used as a standalone model.

Fig. 3.2: Proposed DNN with DTC model.

However, in the hybrid setup, the final softmax layer is omitted during

feature extraction. Instead, the outputs from the penultimate layer (the

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

300

16- neuron layer) or even the combination of all hidden layers up to—

but not including—the final classification layer are used as the new

feature representation. These features are considered robust and

discriminative because they are learned automatically from the raw data

through multiple levels of abstraction.

Decision Tree Classifier (Ensemble Classifier): Once the DNN has

been trained, the intermediate feature representations are extracted and

used to train a Decision Tree Classifier. DTC is an ensemble method

that constructs multiple decision trees during training and outputs the

class that is the mode of the classes (classification) of the individual

trees. This step helps to mitigate overfitting and improves the

robustness of the final predictions, particularly in scenarios where the

data might be noisy or imbalanced.

Layer Architecture Summary:

1. Input Layer:

o Receives the feature vector from the preprocessed

inertial sensor data.

2. Hidden Layers (Feature Extraction):

o Dense Layer 1: 128 neurons, ReLU activation.

o Dense Layer 2: 64 neurons, ReLU activation.

o Dense Layer 3: 32 neurons, ReLU activation.

o Dense Layer 4: 16 neurons, ReLU activation.

3. Output Layer (for standalone DNN classification):

Dense Layer 5: 8 neurons, softmax activation (used during DNN

training, but excluded when extracting features for the RFC)

. 3.2.2 Software Requirements

Python 3.7.6

Python 3.7.6 serves as a pivotal version for developers and researchers

due to its robust features, backward compatibility, and widespread

support across a variety of libraries and frameworks. Released during a

time when machine learning and data science tools were rapidly

evolving, Python 3.7.6 provided a stable and consistent platform. This

version includes critical improvements like enhanced asyncio

functionality for asynchronous programming, increased precision for

floating-point numbers, and optimized data structures. It became the go-

to version for compatibility with popular libraries like TensorFlow 2.0,

PyTorch, and Pandas, ensuring seamless integration and efficient

execution for both academic and industrial applications.

Compared to older Python versions, 3.7.6 introduced several features

such as dataclasses, which simplified boilerplate code for object-

oriented programming. The improved async and await syntax made

concurrent programming more intuitive, while changes to the standard

library enhanced usability and performance. Over newer versions,

Python 3.7.6 remains a preferred choice for legacy systems and projects

requiring compatibility with libraries that may not yet support the latest

Python updates. Its combination of stability and maturity ensures that it

is reliable for long-term projects, especsially in environments where

upgrading the Python interpreter might disrupt existing workflows.

Packages

python -m pip install --upgrade pip

pip install Cython

pip install tensorflow==1.14.0

pip install keras==2.3.1

pip install pandas==0.25.3

pip install scikit-learn==0.22.2.post1

pip install imutils

pip install matplotlib==3.1.1

pip install opencv-python==4.8.0.74

pip install seaborn==0.10.1

pip install h5py==2.10.0

pip install numpy==1.19.2

pip install jupyter

pip install protobuf==3.20.*

pip install scikit-image==0.16.0

TensorFlow Environment

TensorFlow provides a comprehensive ecosystem for building, training,

and deploying machine learning models. Its support for numerical

computation and deep learning applications makes it a staple in AI

research and development. By offering a flexible architecture,

TensorFlow enables deployment across a variety of platforms, including

desktops, mobile devices, and the cloud. The ability to scale across

CPUs, GPUs, and TPUs ensures that TensorFlow is suitable for both

small experiments and large-scale production systems. TensorFlow’s

transition from older versions, like 1.x, to 2.x brought significant

improvements in ease of use, including the introduction of the tf.keras

API for building models, eager execution for dynamic computation, and

enhanced debugging capabilities. Compared to newer frameworks,

TensorFlow retains a strong advantage due to its mature community

support, extensive documentation, and integration with TensorFlow

Extended (TFX) for managing production pipelines. Its compatibility

with other libraries and tools, such as Keras and TensorBoard, makes it

a robust choice for end-to-end machine learning solutions.

4. CONCLUSION
The project successfully implements an anomaly detection system for

industrial control systems (ICS) using the HAI Security dataset. The

system utilizes machine learning (Naïve Bayes) and deep learning (DNN

with Decision Tree) to classify network behavior as normal or under

attack. Preprocessing steps, including timestamp conversion, feature

extraction, and standardization, enhance model performance. The results

demonstrate that deep learning models can effectively detect anomalies,

but challenges such as data imbalance and feature relevance impact

accuracy. The project highlights the potential of AI-driven security

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

301

monitoring in industrial settings, offering a proactive approach to

cybersecurity threats. In the future, this anomaly detection system

can be enhanced by integrating real-time streaming analysis for

immediate threat detection. Advanced techniques like hybrid deep

learning models (e.g., CNN-LSTM) and reinforcement learning

could improve classification accuracy. Additionally, incorporating

explainable AI (XAI) can help in understanding model decisions,

making it more reliable for industrial applications. Further research

can focus on transfer learning to generalize detection across different

ICS environments. Deploying this system in edge computing devices

will allow for low-latency, real-time threat monitoring, enhancing the

security of industrial automation systems.

5. REFERENCES

[1]. Putchala, M.K. Deep Learning Approach for Intrusion

Detection System (ids) in the Internet of Things (iot) Network

Using Gated Recurrent Neural Networks (gru). Master’s

Thesis, Wright State University, Dayton, OH, USA, 2020.

[2]. Du, Y.; Huang, Y.; Wan, G.; He, P. Deep Learning-Based

Cyber–Physical Feature Fusion for Anomaly Detection in

Industrial Control Systems. Mathematics 2022, 10, 4373.

[3]. Goh, J.; Adepu, S.; Tan, M.; Lee, Z.S. Anomaly detection in

cyber-physical systems using recurrent neural networks. In

Proceedings of the 2017 IEEE 18th International Symposium

on High Assurance Systems Engineering (HASE), Singapore,

12–14 January 2020; pp. 140–145.

[4]. Mokhtari, S.; Abbaspour, A.; Yen, K.K.; Sargolzaei, A. A

machine learning approach for anomaly detection in

industrial control systems based on measurement

data. Electronics 2021, 10, 407.

[5]. Wolsing, K.; Thiemt, L.; Sloun, C.V.; Wagner, E.; Wehrle,

K.; Henze, M. Can industrial intrusion detection be simple?

In Proceedings of the European Symposium on Research in

Computer Security, Copenhagen, Denmark, 26–30

September 2022; pp. 574–594.

[6]. M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A

detailed analysis of the kdd cup 99 data set,” in 2020 IEEE

symposium on computational intelligence for security and

defense applications, pp. 1–6.

[7]. Á. L. P. Gómez, L. F. Maimó, A. H. Celdrán, F. J. G.

Clemente, C. C. Sarmiento, C. J. D. C. Masa, and R. M.

Nistal, “On the generation of anomaly detection datasets in

industrial control systems,” IEEE Access, vol. 7, pp. 177460–

177473, 201.

[8]. L. Faramondi, F. Flammini, S. Guarino, and R. Setola, “A

hardware-in-the- water distribution testbed dataset for cyber-

physical security testing,” IEEE Access, vol. 9, pp. 122385–

122396, 2021.

[9]. M. A. Ferrag, O. Friha, D. Hamouda, L. Maglaras, and H.

Janicke, “Edge- iiotset: A new comprehensive realistic cyber

security dataset of iot and iiot applications for centralized and

federated learning,” IEEE Access, vol. 10, pp. 40281–40306,

2022.

[10]. Alsaedi, N. Moustafa, Z. Tari, A. Mahmood, and A. Anwar,

“Ton_iot telemetry dataset: A new generation dataset of iot and

iiot for data-driven intrusion detection systems,” Ieee Access,

vol. 8, pp. 165130–165150, 2020.

[11]. Ozay, M.; Esnaola, I.; Vural, F.T.Y.; Kulkarni, S.R.; Poor,

H.V. Machine learning methods for attack detection in the

smart grid. IEEE Trans. Neural Netw. Learn. Syst. 2020, 27,

1773–1786.

[12]. Pan, S.; Morris, T.; Adhikari, U. Developing a hybrid intrusion

detection system using data mining for power systems. IEEE

Trans. Smart Grid 2021, 6, 3104–3113.

[13]. Choi, S. HIL-Based Augmented ICS (HAI) Security Dataset.

2020. Available online: https://github.com/icsdataset/hai.

https://github.com/icsdataset/hai

